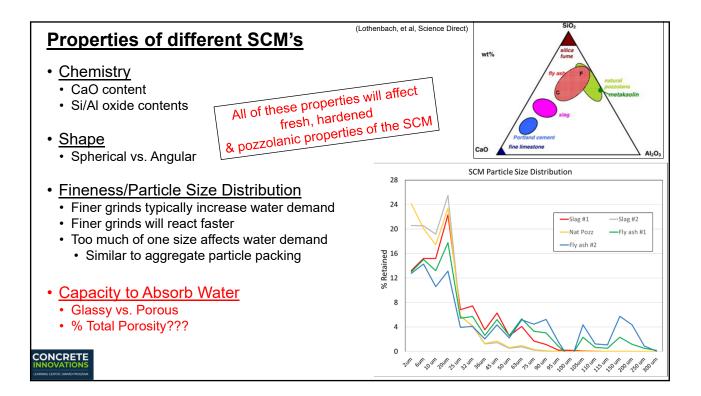
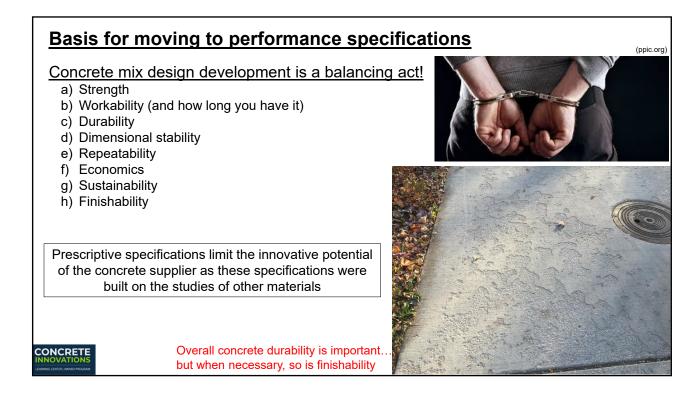
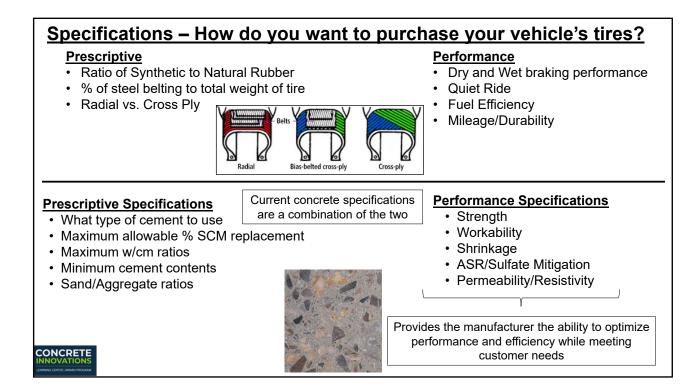

 Lab mix plan to evaluate Natural Pozzolans and water demand (4) mixes per material combination <u>w/varying w/cm ratios</u> 611 lbs. of total cementitious per yard Fixed 25% SCM replacement Targeted a 4 - 5" slump with 5 - 6% total air content 										
	I/II cement IL cement C595 Blended Nat.									
	25% Class F ash	25% Class F ash	25% Nat. Pozzolan	Pozzolan cement						
0.37	High Range WR	High Range WR								
0.40	Mid Range WR	Mid Range WR								
0.43	Low Range WR	Low Range WR	High Range WR	High Range WR						
0.46	No WR	No WR	Mid Range WR	Mid Range WR						
0.49	0.49 Low Range WR Low Range WR									
0.52	0.52 No WR No WR									
	Goals: • Natural Pozzolans vs. Fly Ash (& smaller extent C150 vs. C595 IL) • Understand the limitations of adding extra water to NP mixes • Can the water demand of NP's be met w/o adverse effects? • NP's are being used successfully today: • Can they be used more sustainably/cost effectively/etc?									


•	 Summary of Workability & Air Contents I struggled more w/the target slumps and airs with the mixes with higher dosages of HRWR's Both natural pozzolan mixes required more water than either of the mixes with fly ash 							
	I/II cement IL cement C595							
	25% Class F ash	Pozzolan cement						
0.37	7.5" - 5.0oz/cwt HR - 7.2%	4.75" - 5.0oz/cwt HR - 6.0%						
0.40	4.25" - 5.7oz/cwt MR - 6.8%	4.75" - 5.7oz/cwt MR - 6.2%						
0.43	5" - 3.8oz/cwt LR - 6.8%	5" - 3.8oz/cwt LR - 5.7%	5" - 8.7oz/cwt HR - 7.0%	8.5" - 5.7oz/cwt HR - 7.0%				
0.46	6.5" - No WR - 7.4%	5.75" - No WR - 5.6%	3" - 6.9oz/cwt MR - 5.6%	4.5" - 5.9oz/cwt MR - 5.6%				
0.49	0.49 4" - 5.0oz/cwt LR - 5.3% 4.25" - 5.0oz/cwt LR - 5.							
0.52	0.52 4" - No WR - 5.6% 4.5" - No WR - 5.5%							
CONCI INNOVA LEARNING CENTER J AV	CONCRETE HR = High Range Water Reducer INNOVATIONS MR = Mid Range Water Reducer LR = Low Range Water Reducer LR = Low Range Water Reducer							





Absorptive Capacity Testing of NP's	cs.com) Mercury in equilibrium with and entering an opening under increasing forces
What is causing the higher water demand	Mechanically Applied Forces
 Without reducing strength or increasing permeability? 	
 Mercury Intrusion Porosimetry by Micromeritics in Norcross, GA: Increase pressure (>50,000 psi) to fill pores in SCM's 	Gravitational Force
 Larger pores fill at lower pressuressmaller pores at higher 	Hg Hg Hg
Incremental pressure appliedcapacitance changes	in a second s
• Capacitance change is proportional to the volume change = poros	Since mercury does not wet most substances and will not spontaneously penetrate pores by capillary action. It must be forced into the pores by the application of external pressure.
 <u>Results from Micromeritics:</u> Total % Porosity of Nat. Pozzolans higher than fly ash 	Total % Porosity (via Mercury Intrusion
More potential for both pozzolans to absorb batch water	Porosimetry) 70%
 Aggregates, if dry, will absorb batch water 	65%
 We account for this in our batching adjustments 	60%
If the natural pozzolans in this study absorb batch water:	55%
 How much do they absorb? 	50%
 How quickly do they absorb it? In there a new effective w/em ratio? 	45% Class F Ash Nat. Pozzolan C595 IP
 Is there a new <u>effective</u> w/cm ratio? How much of that water is available for internal curing? 	(Obsidian) (Expanded Shale)
Lawren Chitte I windo Modawa	

ACI 318-19 ACI Building Code Requirements • Current specified durability requirements to ensure adequate durability, protecting against:

 F - Freezing & Thawing S - Sulfate 	Table	19.3.2.1-	-Requirement	nts for cond	crete by exposure	class		(ACI 318-19)
					Additional requirements			Limits on
 P/W - In contact w/water 			Maximum w/cm ^[1,2]	$\frac{\text{Minimum}}{f_{\epsilon}', \text{psi}}$		Air content		cementitious materials
C - Corrosion Protection of Reinforcement		FO	N/A	2500	N/A			N/A
		Fl	0.55	3500		or concrete or Table 19.3		N/A
		F2	0.45	4500		or concrete or Table 19.3		N/A
		F3	0.40(2)	5000 ⁽⁹⁾		or concrete or Table 19.3		26.4.2.2(b)
						entitious materials ^[4] —		Calcium chloride
			24	0.500	ASTM C150	ASTM C595	ASTM C1157	admixture
		S0	N/A	2500	No type restriction	No type restriction	No type restriction	No restriction
		S1	0.50	4000	Π[2][4]	Types with (MS) designation	MS	No restriction
		S2	0.45	4500	V [4]	Types with (HS) designation	HS	Not permitted
Only time a w/am limit abould be aposified	\$3	Option 1	0.45	4500	V plus pozzolan or slag cement ⁽⁷⁾	Types with (HS) designation plus pozzolan or slag cement ⁽⁷⁾	HS plus pozzolan or slag cement ⁽⁷⁾	Not permitted
Only time a w/cm limit should be specified is when an exposure class requires it		Option 2	0.40	5000	V ^[8]	Types with (HS) designation	HS	Not permitted
		W0	N/A	2500			one	
		W1	N/A	2500			2.2(d)	
		W2	0.50	4000 26.4.2.2(d)				
					Maximum water-soluble chloride ion (Cl ⁻) content in concrete, percent by mass of cementitious materials ^(9,10)			
					Nonprestressed concrete	Prestressed concrete	Additional	provisions
CONCRETE		C0	N/A	2500	1.00	0.06	Ne	ne
INNOVATIONS		C1	N/A	2500	0.30	0.06		
LLAMMAG CINTRI ANAMO PROCESSM (Use authorized by ACI)		C2	0.40	5000	0.15	0.06	Concrete	cover ^[11]

ACI 329-14 Report on Performance-Based Requirements for Concrete Based on P2P Phase II Report (2008) provides more details Pre-qualification (PQ) and Field Verified (VFR) tests 						
 ACI 318 Freeze/Thaw Prescriptive Criteria (F2) Max 0.45 w/cm 4,500 psi ³/₄" Coarse6% target total air Proposed Freeze/Thaw Performance Criteria (F2) Minimum chloride resistance (RCPT) (FVR) C666 or C672 or C457 (PQ) Minimum total air content (3%or more) (FVR) 						nce (RCPT) (FVR)
	Exposure Class	Presc alterna resista	riptive tive ⁵ for	Performance alternative ⁵ for resistance to penetration Chloride resistance R'. (Coulomb)*	Prescriptive alternative ⁶ for air content	Performance alternative ⁵ for air content. Establish required air content by methods 2.3.1, 2.3.2, or 2.3.3
	F0 F1	- 0.45 (PQ ³)	4500	 2000 ¹ 2500 ² (PQ ³)	Table 3a	C 666 durability factor ≥ 80%, or C 672 mass loss ≤ 1.0 kg/m ² , or C 457 Spacing factor ≤ 0.008 in. Air content ≥ 3.0% per 2.3.1, 2.3.2, or 2.3.3. (PQ ²)
	F2	0.45 (FVR ⁴)	4500	2000 ¹ 2500 ² (FVR ⁴)	Table 3a	C 666 durability factor ≥ 85%, or C 672 mass loss ≤ 1.0 kg/m², or C 457 Spacing factor ≤ 0.008 in. Air content ≥ 3.0% per 2.3.1, 2.3.2, or 2.3.3. (FVR ⁴)
	F3	0.45 (FVR ⁴)	4500	2000 ¹ 2500 ² (FVR ⁴)	Table 3a with additional prescriptive requirements of Table 3b. ⁶	C 666 durability factor ≥ 00%, or C 672 mass loss ≥ 10 kg/m², or C 457 Spacing factor ≤ 0.008 in. Air content ≥ 3.0% per 2.3.1, 2.3.2, or 2.3.3. (FVR*)

Industry Resources Natural Pozzolan Associat pozzolan.org 208-252-2808 • NRMCA P2P Specifications in Practice Selected Published Paper 	website: Po Email: Info Tel: 200	NATURAL POZZOLAN ASSOCIATION ZZOIAN.org @pozzolan.org 82522808					
These new SCM's dIf the industry is goin	novate. Moving to performa	s our prescriptive sustainability goals	specs were built around s in front of us, producers will				
Start becoming fa	miliar with & permitting pe	erformance spec	ifications where you can!				
Questionsfeel free to email:							
	Joe Thomas		avid Figurski <u>Irski@holcim.com</u>				