

- **60+** years of experience | established in 1960
- Sustainable design leaders
- Diverse portfolio | New & existing structures
- Pioneer in seismic base isolation systems
- Known for our innovative approach
- Early adopters of new technologies & processes

About the Speaker

John O'Hagan, P.E.

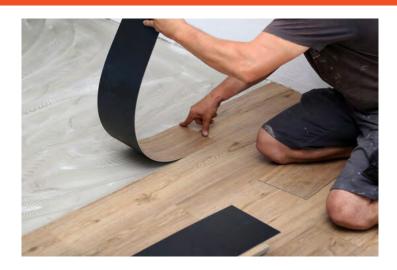
Role at Forell | Elsesser

- Engineer
- Lead Technical Development of Sustainable Design Capabilities

Beyond Forell | Elsesser

- Chair of Sustainable Design Committee within the Structural Engineers Association of California
- Our role is to provide learning opportunities and resources to practicing engineers in California

Why is Data So Important?



Example - PVC

Why Does Data Matter?

1800 Massachusetts Ave. NW, Suite 300 Washington, DC 20036 T: 202 828-7422 F: 202 828-5110 www.usgbc.org

MEMORANDUM

From: U.S. Green Building Council, Board of Directors

Date: Monday, February 26, 2007 Subject: TSAC Report on PVC

ev

mate

Four y the ex an iss proce LEED issue, proce In November 2002, at the request of the USGBC's LEED Steering Committee, the Technical and Scientific Advisory Committee (TSAC) established a PVC Task Group to assist TSAC in investigating the charge of:

PVC-based materials have a significant market share. Then, to explore whether there was a basis for a PVC-related credit, the Task Group *investigated whether for those applications the avail*

To compare the impacts of alternative materials choices, two assessments — an environmental life cycle assessment (LCA) and a risk assessment — were completed for each material in each application. The analytical process used is supported below followed by the findings

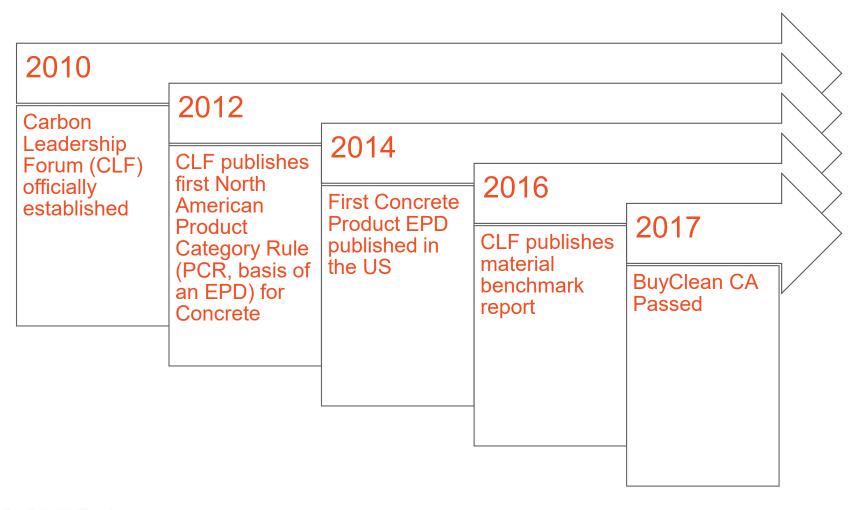
Such as:

Summary of Findings

No single material shows up as the best across all the human health and environmental impact categories, nor as the worst. This primary finding from the integration of LCA and risk

Requirements for Informed Reduction Strategies

1) Robust set of data


2) Confidence that data set is representative of what will be procured

Isn't this a Concrete Webinar?

Concrete EPD Data Development

Concrete Industry Baselines

TABLE D: CO28 LIMITS IN CONCRETE MIXTURE

	CO₂e Limits in Mixture (75% percentile)*			Marin County	NRMCA ¹²	2021 CLF Baselines ¹⁶		
Specified 28-day compressive strength f'c, psi	Maximum kg/m³ (SI)	High-early strength** Maximum kg/ m³ (SI)	Lightweight concrete Maximum kg/m³ (SI)	Maximum kg/m³ (SI)	NRMCA Average 50%	Achieable (low) kg/ m3 (SI)	Typical (Medi- an) kg/ m3 (SI)	Baseline (high)
≤ 2499	302	393	578	260	266	190	266	340
2500-3499	382	497	578	289	291	210	291	380
3500-4499	432	562	626	313	342	260	343	470
4500-5499	481	625	675	339	405	320	406	580
5500-6499	505	657	N/A	338	429	330	429	610
≥ 6500	518	655	N/A	394	498	380	498	710

Credit: New Building Institute

	for GSA Low Embodied Carbon Concrete (kilograms of carbon dioxide equivalent per cubic meter - CO ₂ e kg/m³)			
Specified compressive strength (f'c in PSI)	Standard Mix	High Early Strength	Lightweight	
up to 2499	242	314	462	
2500-3499	306	398	462	
3500-4499	346	450	501	
4500-5499	385	500	540	
5500-6499	404	526	N/A	
6500 and up	414	524	N/A	

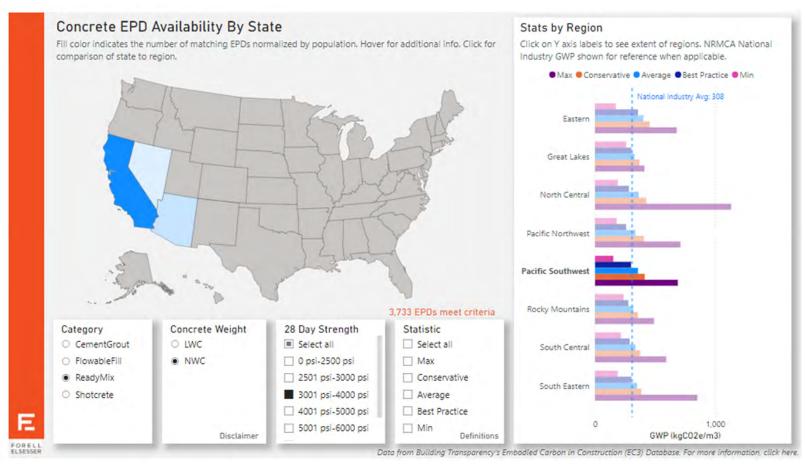
Maximum Global Warming Potential Limits

10

These numbers reflect a 20% reduction from GWP ($\mathrm{CO_2e}$) limits in proposed code language: "<u>Lifecycle GHG Impacts in Building Codes</u>" by the New Buildings Institute, January 2022.

Requirements for Informed Reduction Strategies

1) Robust set of data


2) Confidence that data set is representative of what will be procured

Concrete Data Visualization

Concrete EPD Availability

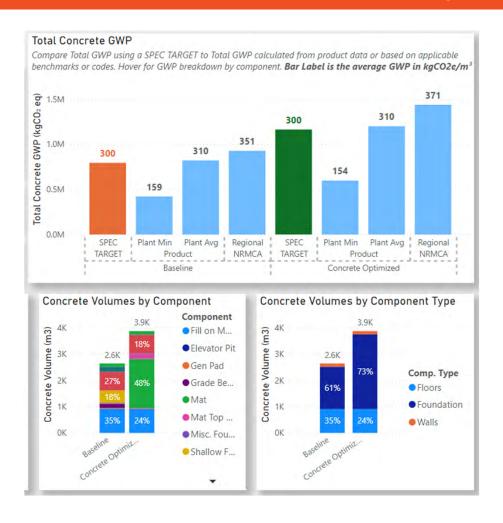
https://forell.com/concrete-epd-availability

13

Requirements for Informed Reduction Strategies

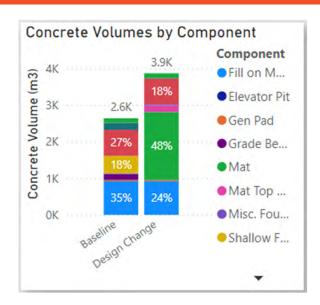
1) Robust set of data

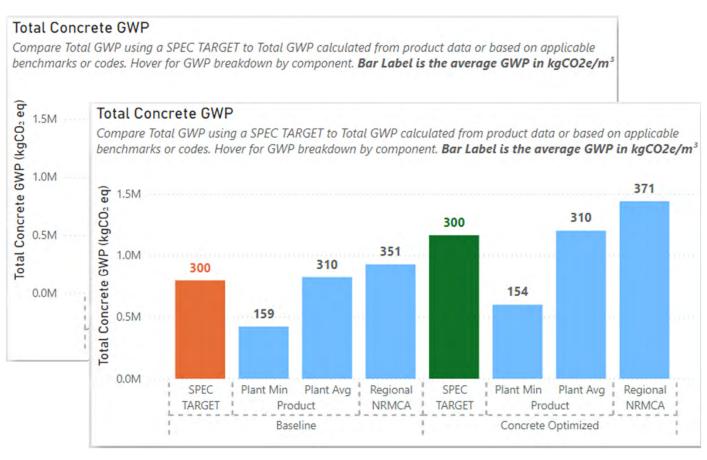
2) Confidence that data set is representative of what will be procured



What Next?

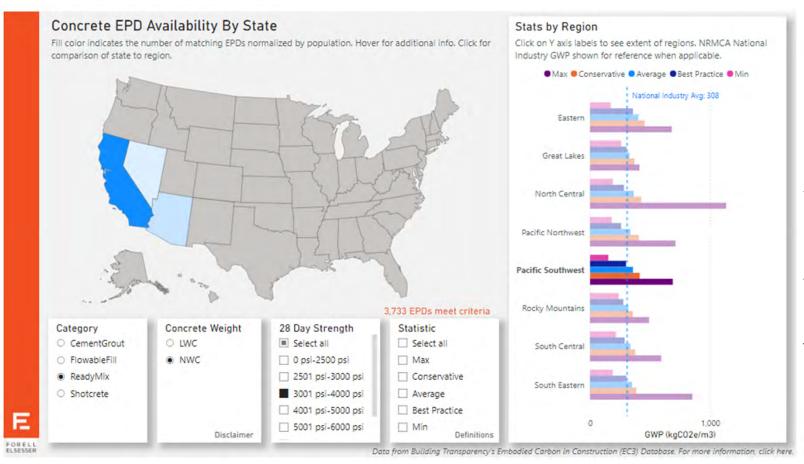
Component by Component Comparison


16



Component by Component Comparison

17



Questions/Comments

Concrete EPD Availability

https://forell.com/concrete-epd-availability

Contact: John O'Hagan, PE Forell | Elsesser Engineers j.ohagan@forell.com

19

FOR ELL | ELSESSER