

Advancements in Limestone Calcined Clay Cement (LC3)

December 18, 2024

Eric Koehler, Ph.D., P.E. Vice President – Innovation & Quality Titan America ekoehler@titanamerica.com

1

Calcined Clay

- ✓ High Strength and Highly Durable
 Cementitious Material
- ✓ Made with Widely Available Raw Materials
- ✓ Meets Existing
 Specifications
- ✓ >50% Lower Energy^{*}
- \checkmark >80% Lower CO₂*

Blended (Cements				
	Portland Cement ASTM C150 AASHTO M85	Blended Cement ASTM C595 AASHTO M240			
	(Type I/II)	Portland-Limestone (Type IL)	Portland-Pozzolan (Type IP)	Portland-Slag (Type IS)	Ternary (Type IT) ¹
Clinker (typical)	90-95%	80-90%	60-80%	30-80%	40-70%
Gypsum (typical)	4-6%	4-6%	4-6%	4-6%	4-6%
Limestone	0-5%	5-15%			15% max ²
Pozzolan (fly ash, silica fume, etc.)			40% max		40% max ²
Slag				95% max	95% max ²
Potential CO ₂	Standard	Lower	Lower	Lower	Lowest
Sulfate Resistance	C3A Limit	ASTM C1012	ASTM C1012	ASTM C1012	ASTM C1012
Heat of Hydration	C3A & C3S Limit	ASTM C1702	ASTM C1702	ASTM C1702	ASTM C1702

 $^1\mbox{Can}$ use up to two of pozzolan, limestone, and slag $^2\mbox{Maximum}$ of pozzolan, slag and limestone is 70%

Mining	Blending G	rinding Drying	Calcination Cooling C	Grinding Blending Shipping
Raw ionsCalci	clays are calcined (h (OH ⁻) and disorderir nation is typically ac	neated to 650 to 900 C ng from a crystalline to ccomplished by one of), which results in de-hydro amorphous structure) two technologies:	xylation (removal of hydroxyl
		Rotary Kiln	Flash Calciner	
	Temperature	Lower	Higher	
	Temperature Residence Time	Lower 10s of minutes	Higher Seconds	
	Temperature Residence Time Energy Use	Lower 10s of minutes Higher	Higher Seconds Lower	
	Temperature Residence Time Energy Use CO ₂	Lower 10s of minutes Higher Higher	Higher Seconds Lower Lower	

Product Performance Scorecard

Property	Test	
Slump & Slump Loss	ASTM C143	
Air	ASTM C231	
Setting Time	ASTM C403	
Strength	ASTM C39	
Hot Weather	ACI PRC-305	
Cold Weather	ACI PRC-306	
Finishability	Mock-up	
Pumpability	Mock-up	
Bleeding	ASTM C232	
Heat of Hydration	ASTM C1702	
Chloride Resistance	ASTM C1202, C1556	
Shrinkage	ASTM C157	
Cracking Potential (Restrained Shrinkage)	ASTM C1581	
Sulfate Resistance	ASTM C1012	
Alkali Silica Reactivity Mitigation	ASTM C1260, C1293, C441	
Freeze-Thaw Resistance	ASTM C66	
Scaling Resistance	ASTM C672	
Abrasion Resistance	ASTM C944	

Best Practices for Implementing New Cements Test typical mixes representing range of conditions

- Air and non-air entrained
- With and without SCM
- Strength levels

•

- Perform field mockups for key applications ٠
- Select optimal percentage for equivalent or enhanced performance relative to conventional materials
- Evaluate consistency within a source •
- Prepare new submittals
- Ensure best practices are followed throughout • concrete construction
 - Hot weather
 - Cold weather
 - Finishing
 - Quality control

Conclusions

- SCMs are a proven way to decarbonize concrete
- Calcined clay is a highperforming cementitious material made with widely available materials and with lower embodied energy and CO₂
- Although calcined clay meets ASTM C595 and ASTM C618, revisions to concrete specifications will accelerate the implementation of Type IT

29

Advancements in Limestone Calcined Clay Cement (LC3)

December 18, 2024

Eric Koehler, Ph.D., P.E. Vice President – Innovation & Quality Titan America ekoehler@titanamerica.com